Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 134: 112100, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38728877

RESUMEN

The parasite Leishmania resides as amastigotes within the macrophage parasitophorous vacuoles inflicting the disease Leishmaniasis. Leishmania selectively modulates mitogen-activated protein kinase (MAPK) phosphorylation subverting CD40-triggered anti-leishmanial functions of macrophages. The mechanism of any pathogen-derived molecule induced host MAPK modulation remains poorly understood. Herein, we show that of the fifteen MAPKs, LmjMAPK4 expression is higher in virulent L. major. LmjMAPK4- detected in parasitophorous vacuoles and cytoplasm- binds MEK-1/2, but not MKK-3/6. Lentivirally-overexpressed LmjMAPK4 augments CD40-activated MEK-1/2-ERK-1/2-MKP-1, but inhibits MKK3/6-p38MAPK-MKP-3, phosphorylation. A rationally-identified LmjMAPK4 inhibitor reinstates CD40-activated host-protective anti-leishmanial functions in L. major-infected susceptible BALB/c mice. These results identify LmjMAPK4 as a MAPK modulator at the host-pathogen interface and establish a pathogen-intercepted host receptor signaling as a scientific rationale for identifying drug targets.

2.
Methods Mol Biol ; 2807: 31-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743219

RESUMEN

RNA fluorescence in situ hybridization (FISH) serves as a method for visualizing specific RNA molecules within cells. Its primary utility lies in the observation of messenger RNA (mRNA) molecules associated with particular genes of significance. This technique can also be applied to examine viral transcription and the localization of said transcripts within infected cells. In this context, we provide a comprehensive protocol for the detection, localization, and quantification of HIV-1 transcripts in mammalian cell lines. This encompasses the preparation of required reagents, cellular treatments, visualization, and the subsequent analysis of the data acquired. These parameters play a pivotal role in enhancing our comprehension of the molecular processes during infection, particularly at the crucial transcription phase of the viral life cycle.


Asunto(s)
VIH-1 , Hibridación Fluorescente in Situ , ARN Viral , Transcripción Genética , Hibridación Fluorescente in Situ/métodos , Humanos , ARN Viral/genética , VIH-1/genética , ARN Mensajero/genética , Infecciones por VIH/virología , Línea Celular
3.
J Infect Dis ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537250

RESUMEN

Concerns regarding toxicity and resistance of current drugs have been reported in visceral leishmaniasis. Anti-microbial peptides are considered as new promising candidates and amongst them, human cathelicidin hCAP18/LL-37 showed significant parasite killing on drug-sensitive and resistant Leishmania promastigotes, coupled with its apoptosis-inducing role. Administration of hCAP18/LL-37 in infected macrophages also decreased parasite survival and increased the host favorable cytokine IL-12. However, 1,25-dihydroxyvitamin D3 (VitD3)-induced endogenous hCAP18/LL-37 production was hampered in infected THP-1 cells. Infection also suppressed the VitD3-receptor (VDR), transcription factor of hCAP18/LL-37. cAMP response element modulator (CREM), the repressor of VDR, was induced in infection resulting in suppression of both VDR and cathelicidin expression. PGE2/cAMP/PKA axis was found to regulate CREM induction during infection and silencing CREM in infected cells and BALB/c mice led to decreased parasite survival. Present study thus documents the anti-leishmanial potential of cathelicidin and further identifies CREM as a repressor of cathelicidin in Leishmania infection.

4.
Sci Adv ; 9(36): eadh9170, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37672576

RESUMEN

The functional consequences of circular RNA (circRNA) expression on HIV-1 replication are largely unknown. Using a customized protocol involving direct RNA nanopore sequencing, here, we captured circRNAs from HIV-1-infected T cells and identified ciTRAN, a circRNA that modulates HIV-1 transcription. We found that HIV-1 infection induces ciTRAN expression in a Vpr-dependent manner and that ciTRAN interacts with SRSF1, a protein known to repress HIV-1 transcription. Our results suggest that HIV-1 hijacks ciTRAN to exclude serine/arginine-rich splicing factor 1 (SRSF1) from the viral transcriptional complex, thereby promoting efficient viral transcription. In addition, we demonstrate that an SRSF1-inspired mimic can inhibit viral transcription regardless of ciTRAN induction. The hijacking of a host circRNA thus represents a previously unknown facet of primate lentiviruses in overcoming transmission bottlenecks.


Asunto(s)
VIH-1 , Nanoporos , Animales , Provirus/genética , VIH-1/genética , ARN Circular , Expresión Génica
6.
mBio ; 14(2): e0016623, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36976020

RESUMEN

HIV-1 antagonizes SERINC5 by redundant mechanisms, primarily through Nef and additionally via envelope glycoprotein. Paradoxically, HIV-1 preserves Nef function to ensure the exclusion of SERINC5 from virion incorporation regardless of the availability of envelope that can confer resistance, suggesting additional roles of the virion-incorporated host factor. Here, we report an unusual mode of SERINC5 action in inhibiting viral gene expression. This inhibition is observed only in the myeloid lineage cells but not in the cells of epithelial or lymphoid origin. We found that SERINC5-bearing viruses induce the expression of RPL35 and DRAP1 in macrophages, and these host proteins intercept HIV-1 Tat from binding to and recruiting a mammalian capping enzyme (MCE1) to the HIV-1 transcriptional complex. As a result, uncapped viral transcripts are synthesized, leading to the inhibition of viral protein synthesis and subsequent progeny virion biogenesis. Cell-type-specific inhibition of HIV-1 gene expression thus exemplifies a novel antiviral function of virion-incorporated SERINC5. IMPORTANCE In addition to Nef, HIV-1 envelope glycoprotein has been shown to modulate SERINC5-mediated inhibition. Counterintuitively, Nef from the same isolates preserves the ability to prevent SERINC5 incorporation into virions, implying additional functions of the host protein. We identify that virion-associated SERINC5 can manifest an antiviral mechanism independent of the envelope glycoprotein to regulate HIV-1 gene expression in macrophages. This mechanism is exhibited by affecting the viral RNA capping and is plausibly adopted by the host to overcome the envelope glycoprotein-mediated resistance to SERINC5 restriction.


Asunto(s)
Infecciones por VIH , VIH-1 , Animales , Proteínas de la Membrana/metabolismo , VIH-1/fisiología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Antivirales , Macrófagos/metabolismo , Expresión Génica , Glicoproteínas/genética , Mamíferos/metabolismo
7.
Viruses ; 15(3)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36992361

RESUMEN

The host transmembrane protein SERINC5 is incorporated into retrovirus particles and inhibits HIV-1 infectivity. The lentiviral Nef protein counteracts SERINC5 by downregulating it from the cell surface and preventing its incorporation into virions. The ability of Nef to antagonize the host factor varies in magnitude between different HIV-1 isolates. After having identified a subtype H nef allele unable to promote HIV-1 infectivity in the presence of SERINC5, we investigated the molecular determinants responsible for the defective counteraction of the host factor. Chimeric molecules with a subtype C Nef highly active against SERINC5 were constructed to locate Nef residues crucial for the activity against SERINC5. An Asn at the base of the C-terminal loop of the defective nef allele was found in place of a highly conserved acidic residue (D/E 150). The conversion of Asn to Asp restored the ability of the defective Nef to downregulate SERINC5 and promote HIV-1 infectivity. The substitution was also found to be crucial for the ability of Nef to downregulate CD4, but not for Nef activities that do not rely on the internalization of receptors from the cell surface, suggesting a general implication in promoting clathrin-mediated endocytosis. Accordingly, bimolecular fluorescence complementation revealed that the conserved acidic residue contributes to the recruitment of AP2 by Nef. Altogether, our results confirm that Nef downregulates SERINC5 and CD4 by engaging a similar machinery and indicates that, in addition to the di-leucine motif, other residues in the C-terminal flexible loop are important for the ability of the protein to sustain clathrin-mediated endocytosis.


Asunto(s)
Antígenos CD4 , Linfocitos T CD4-Positivos , VIH-1 , Proteínas de la Membrana , Productos del Gen nef del Virus de la Inmunodeficiencia Humana , Humanos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Proteínas de la Membrana/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/química , Sustitución de Aminoácidos , Células HEK293 , Células Jurkat , VIH-1/patogenicidad , Secuencia de Aminoácidos , Endocitosis , Clatrina , Infecciones por VIH , Antígenos CD4/metabolismo , Regulación hacia Abajo
8.
J Immunol ; 208(11): 2540-2548, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35562118

RESUMEN

In the early phase of infection, the intramacrophage pathogen Leishmania donovani protects its niche with the help of the antiapoptotic protein myeloid cell leukemia-1 (MCL-1). Whether Leishmania could exploit MCL-1, an extremely labile protein, at the late phase is still unclear. A steady translational level of MCL-1 observed up to 48 h postinfection and increased caspase-3 activity in MCL-1-silenced infected macrophages documented its importance in the late hours of infection. The transcript level of MCL-1 showed a sharp decline at 6 h postinfection, and persistent MCL-1 expression in cyclohexamide-treated cells negates the possibility of de novo protein synthesis, thereby suggesting infection-induced stability. Increased ubiquitination, a prerequisite for proteasomal degradation of MCL-1, was also found to be absent in the late hours of infection. Lack of interaction with its specific E3 ubiquitin ligase MULE (MCL-1 ubiquitin ligase E3) and specific deubiquitinase USP9X prompted us to search for blockade of the ubiquitin-binding site in MCL-1. To this end, TCTP (translationally controlled tumor protein), a well-known binding partner of MCL-1 and antiapoptotic regulator, was found to be strongly associated with MCL-1 during infection. Phosphorylation of TCTP, a requirement for MCL-1 binding, was also increased in infected macrophages. Knockdown of TCTP decreased MCL-1 expression and short hairpin RNA-mediated silencing of TCTP in an infected mouse model of visceral leishmaniasis showed decreased parasite burden and induction of liver cell apoptosis. Collectively, our investigation revealed a key mechanism of how L. donovani exploits TCTP to establish infection within the host.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteína Tumoral Controlada Traslacionalmente 1 , Animales , Proteínas Reguladoras de la Apoptosis , Macrófagos/parasitología , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína Tumoral Controlada Traslacionalmente 1/metabolismo , Ubiquitina-Proteína Ligasas
9.
Mol Ther Nucleic Acids ; 28: 202-218, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35402072

RESUMEN

Strategies to modulate cellular DNA repair pathways hold immense potential to enhance the efficiency of CRISPR-Cas9 genome editing platform. In the absence of a repair template, CRISPR-Cas9-induced DNA double-strand breaks are repaired by the endogenous cellular DNA repair pathways to generate loss-of-function edits. Here, we describe a reporter-based assay for expeditious measurement of loss-of-function editing by CRISPR-Cas9. An unbiased chemical screen performed using this assay enabled the identification of small molecules that promote loss-of-function editing. Iterative rounds of screens reveal Repsox, a TGF-ß signaling inhibitor, as a CRISPR-Cas9 editing efficiency enhancer. Repsox invariably increased CRISPR-Cas9 editing in a panel of commonly used cell lines in biomedical research and primary cells. Furthermore, Repsox-mediated editing enhancement in primary human CD4+ T cells enabled the generation of HIV-1-resistant cells with high efficiency. This study demonstrates the potential of transiently targeting cellular pathways by small molecules to improve genome editing for research applications and is expected to benefit gene therapy efforts.

10.
Life Sci Alliance ; 5(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35296517

RESUMEN

Breakthrough infections by emerging SARS-CoV-2 variants raise significant concerns. Here, we sequence-characterized the spike gene from breakthrough infections that corresponded to B.1.617 sublineage. Delineating the functional impact of spike mutations revealed that N-terminal domain (NTD)-specific E156G/Δ157-158 contributed to increased infectivity and reduced sensitivity to vaccine-induced antibodies. A six-nucleotide deletion (467-472) in the spike-coding region introduced this change in the NTD. We confirmed the presence of E156G/Δ157-158 from cases concurrently screened, in addition to other circulating spike (S1) mutations such as T19R, T95I, L452R, E484Q, and D614G. Notably, E156G/Δ157-158 was present in more than 90% of the sequences reported from the USA and UK in October 2021. The spike-pseudotyped viruses bearing a combination of E156G/Δ157-158 and L452R exhibited higher infectivity and reduced sensitivity to neutralization. Notwithstanding, the post-recovery plasma robustly neutralized viral particles bearing the mutant spike. When the spike harbored E156G/Δ157-158 along with L452R and E484Q, increased cell-to-cell fusion was also observed, suggesting a combinatorial effect of these mutations. Our study underscores the importance of non-RBD changes in determining infectivity and immune escape.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
11.
Front Immunol ; 12: 602006, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122399

RESUMEN

Circular RNA (circRNA), a relatively new member of the non-coding RNA family, has spurred great interest among researchers following its discovery as a ubiquitous class within the RNA world. Rapid progress in circRNA biology has coincided with its identification in a plethora of diverse roles including regulation of gene expression and probable coding potential, as well as competing interactions with proteins and microRNAs in various pathological conditions. Emerging evidence suggests that circRNAs also function in viral infections. The deregulation of circRNAs during viral infection has prompted investigations into the possibilities of circRNA as a competing endogenous RNA (ceRNA) that modulates response to infection. Recently, viruses have been shown to encode circRNAs with proviral functions, providing a strong impetus for focused efforts to elucidate the networks coaxed by circRNAs during infection. This review elaborates on recent insights gained on the roles of circRNAs during virus infection and immunity.


Asunto(s)
Interacciones Huésped-Patógeno/genética , ARN Circular , Virosis/genética , Virosis/virología , Animales , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Inmunomodulación
12.
Front Cell Infect Microbiol ; 11: 663688, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968806

RESUMEN

The establishment of SARS CoV-2 spike-pseudotyped lentiviral (LV) systems has enabled the rapid identification of entry inhibitors and neutralizing agents, alongside allowing for the study of this emerging pathogen in BSL-2 level facilities. While such frameworks recapitulate the cellular entry process in ACE2+ cells, they are largely unable to factor in supplemental contributions by other SARS CoV-2 genes. To address this, we performed an unbiased ORF screen and identified the nucleoprotein (N) as a potent enhancer of spike-pseudotyped LV particle infectivity. We further demonstrate that the spike protein is better enriched in virions when the particles are produced in the presence of N protein. This enrichment of spike renders LV particles more infectious as well as less vulnerable to the neutralizing effects of a human IgG-Fc fused ACE2 microbody. Importantly, this improvement in infectivity is observed with both wild-type spike protein as well as the D614G mutant. Our results hold important implications for the design and interpretation of similar LV pseudotyping-based studies.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Nucleoproteínas/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética
13.
J Virol ; 95(13): e0022921, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33883219

RESUMEN

SERINC5 restricts nef-defective HIV-1 by affecting early steps of the virus life cycle. Distantly related retroviruses with a wide host range encode virulent factors in response to challenge by SERINC5. However, the evolutionary origins of this antiretroviral activity, its prevalence among the paralogs, and its ability to target retroviruses remain understudied. In agreement with previous studies, we found that four human SERINC paralogs inhibit nef-defective HIV-1, with SERINC2 being an exception. Here, we demonstrate that this lack of activity in human SERINC2 is associated with its post-whole-genome duplication (post-WGD) divergence, as evidenced by the ability of pre-WGD orthologs from Saccharomyces cerevisiae and flies and a post-WGD-proximate SERINC2 from coelacanths to inhibit the virus. Intriguingly, Nef is unable to counter coelacanth SERINC2, indicating that such activity was directed toward other retroviruses found in coelacanths (like foamy viruses). However, foamy virus-derived vectors are intrinsically resistant to the action of SERINC2, and we show that the foamy virus envelope confers this resistance by affecting its steady-state levels. Our study highlights an ancient origin of antiretroviral activity in SERINCs and a hitherto-unknown interaction with a foamy virus. IMPORTANCESERINC5 constitutes a critical barrier to the propagation of retroviruses, as highlighted by parallel emergence of anti-SERINC5 activities among distant retroviral lineages. Therefore, understanding the origin and evolution of these host factors will provide key information about virus-host relationships that can be exploited for future drug development. Here, we show that SERINC5-mediated nef-defective HIV-1 infection inhibition is evolutionarily conserved. SERINC2 from coelacanth restricts HIV-1, and it was functionally adapted to target foamy viruses. Our findings provide insights into the evolutionary origin of antiretroviral activity in the SERINC gene family and uncover the role of SERINCs in shaping the long-term conflicts between retroviruses and their hosts.


Asunto(s)
VIH-1/crecimiento & desarrollo , Proteínas de la Membrana/metabolismo , Spumavirus/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral/fisiología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Animales , Antirretrovirales/metabolismo , Línea Celular , Peces/genética , Células HEK293 , Haplorrinos/genética , Humanos , Proteínas de la Membrana/genética , Saccharomyces cerevisiae/metabolismo
14.
Virusdisease ; 32(1): 1-12, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33644261

RESUMEN

The COVID-19 pandemic has elicited a rapid response from the scientific community with significant advances in understanding the causative pathogen (SARS-CoV-2). Mechanisms of viral transmission and pathogenesis, as well as structural and genomic details, have been reported, which are essential in guiding containment, treatment, and vaccine development efforts. Here, we present a concise review of the recent research in these domains and an exhaustive analysis of the genomic origins of SARS-CoV-2. Particular emphasis has been placed on the pathology and disease progression of COVID-19 as documented by recent clinical studies, in addition to the characteristic immune responses involved therein. Furthermore, we explore the potential of nanomaterials and nanotechnology to develop diagnostic tools, drug delivery systems, and personal protective equipment design within the ongoing pandemic context. We present this as a ready resource for researchers to gain succinct, up-to-date insights on SARS-CoV-2.

15.
Front Microbiol ; 11: 559792, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343516

RESUMEN

HIV-1 employs a rich arsenal of viral factors throughout its life cycle and co-opts intracellular trafficking pathways. This exquisitely coordinated process requires precise manipulation of the host microenvironment, most often within defined subcellular compartments. The virus capitalizes on the host by modulating cell-surface proteins and cleverly exploiting nuclear import pathways for post entry events, among other key processes. Successful virus-cell interactions are indeed crucial in determining the extent of infection. By evolving defenses against host restriction factors, while simultaneously exploiting host dependency factors, the life cycle of HIV-1 presents a fascinating montage of an ongoing host-virus arms race. Herein, we provide an overview of how HIV-1 exploits native functions of the host cell and discuss recent findings that fundamentally change our understanding of the post-entry replication events.

16.
iScience ; 23(7): 101322, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32688283

RESUMEN

Precise regulation of innate immunity is crucial for development of appropriate host immunity against microbial infections and maintenance of immune homeostasis. MicroRNAs are small non-coding RNAs, post-transcriptional regulator of multiple genes, and act as a rheostat for protein expression. Here, we identified microRNA-30e-5p induced by hepatitis B virus and other viruses that act as a master regulator for innate immunity. Moreover, pegylated interferons treatment of patients with HBV for viral reduction also reduces miRNA. Additionally, we have also shown the immuno-pathological effects of miR-30e in patients with systemic lupus erythematosus (SLE) and mouse model. Mechanistically, miR-30e targets multiple negative regulators of innate immune signaling and enhances immune responses. Furthermore, sequestering of miR-30e in patients with SLE and mouse model significantly reduces type-I interferon and pro-inflammatory cytokines. Collectively, our study demonstrates the novel role of miR-30e in innate immunity and its prognostic and therapeutic potential in infectious and autoimmune diseases.

17.
Chem Sci ; 11(30): 7910-7920, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34123075

RESUMEN

Porous organic frameworks (POFs) with a heteroatom rich ionic backbone have emerged as advanced materials for catalysis, molecular separation, and antimicrobial applications. The loading of metal ions further enhances Lewis acidity, augmenting the activity associated with such frameworks. Metal-loaded ionic POFs, however, often suffer from physicochemical instability, thereby limiting their scope for diverse applications. Herein, we report the fabrication of triaminoguanidinium-based ionic POFs through Schiff base condensation in a cost-effective and scalable manner. The resultant N-rich ionic frameworks facilitate selective CO2 uptake and afford high metal (Zn(ii): 47.2%) loading capacity. Owing to the ionic guanidinium core and ZnO infused mesoporous frameworks, Zn/POFs showed pronounced catalytic activity in the cycloaddition of CO2 and epoxides into cyclic organic carbonates under solvent-free conditions with high catalyst recyclability. The synergistic effect of infused ZnO and cationic triaminoguanidinium frameworks in Zn/POFs led to robust antibacterial (Gram-positive, Staphylococcus aureus and Gram-negative, Escherichia coli) and antiviral activity targeting HIV-1 and VSV-G enveloped lentiviral particles. We thus present triaminoguanidinium-based POFs and Zn/POFs as a new class of multifunctional materials for environmental remediation and biomedical applications.

18.
J Biosci ; 452020.
Artículo en Inglés | MEDLINE | ID: mdl-33410425

RESUMEN

An unprecedented worldwide spread of the SARS-CoV-2 has imposed severe challenges on healthcare facilities and medical infrastructure. The global research community faces urgent calls for the development of rapid diagnostic tools, effective treatment protocols, and most importantly, vaccines against the pathogen. Pooling together expertise across broad domains to innovate effective solutions is the need of the hour. With these requirements in mind, in this review, we provide detailed critical accounts on the leading efforts at developing diagnostics tools, therapeutic agents, and vaccine candidates. Importantly, we furnish the reader with a multidisciplinary perspective on how conventional methods like serology and RT-PCR, as well as cutting-edge technologies like CRISPR/Cas and artificial intelligence/machine learning, are being employed to inform and guide such investigations. We expect this narrative to serve a broad audience of both active and aspiring researchers in the field of biomedical sciences and engineering and help inspire radical new approaches towards effective detection, treatment, and prevention of this global pandemic.


Asunto(s)
Antivirales/uso terapéutico , Prueba de Ácido Nucleico para COVID-19/métodos , Vacunas contra la COVID-19/biosíntesis , COVID-19/prevención & control , Pandemias/prevención & control , SARS-CoV-2/patogenicidad , Antivirales/síntesis química , Inteligencia Artificial , COVID-19/inmunología , COVID-19/terapia , COVID-19/virología , Vacunas contra la COVID-19/genética , Sistemas CRISPR-Cas , Manejo de la Enfermedad , Descubrimiento de Drogas/métodos , Reposicionamiento de Medicamentos/métodos , Humanos , Inmunización Pasiva/métodos , Técnicas de Diagnóstico Molecular , Simulación del Acoplamiento Molecular , Técnicas de Amplificación de Ácido Nucleico , Ingeniería de Proteínas/métodos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Sueroterapia para COVID-19
19.
Annu Rev Virol ; 5(1): 323-340, 2018 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-30265629

RESUMEN

SERINC genes encode for homologous multipass transmembrane proteins with unknown cellular function, despite being highly conserved across eukaryotes. Among the five SERINC genes found in humans, SERINC5 was shown to act as a powerful inhibitor of retroviruses. It is efficiently incorporated into virions and blocks the penetration of the viral core into target cells, by impairing the fusion process with a yet unclear mechanism. SERINC5 was also found to promote human immunodeficiency virus 1 (HIV-1) virion neutralization by antibodies, indicating a pleiotropic activity, which remains mostly unexplored. Counteracting factors have emerged independently in at least three retrovirus lineages, underscoring their fundamental importance during retrovirus evolution. Nef and S2 of primate and equine lentiviruses, and glycoGag of gammaretroviruses, act similarly by targeting SERINC5 to endosomes and excluding it from virions. Here, we discuss the features that distinguish SERINC5 from other known restriction factors, delineating a yet unique class of antiviral inhibitors.


Asunto(s)
VIH/inmunología , Inmunidad Innata , Factores Inmunológicos/metabolismo , Virus de la Leucemia Murina/inmunología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Humanos , Ratones
20.
Immunobiology ; 223(11): 671-676, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30025708

RESUMEN

The breadth of the host range of single-stranded DNA (ssDNA) viruses is roughly comparable to the host range of double-stranded DNA viruses (dsDNA). Yet, general ssDNA sensing receptors that activate the immune system have not been unequivocally identified while numerous dsDNA sensing receptors are known. Here, we hypothesize that some of the Single-Stranded DNA Binding (SSB) proteins may act as receptors that detect single-stranded DNA from pathogens and activate the innate immune system. As the first test of our hypothesis, we checked whether human genes that are known to bind to ssDNA are potentially interferon-regulated. Out of the 102 human genes that are known to have ssDNA binding ability 23 genes show a more than two-fold increase in gene expression upon interferon treatment. Single-stranded DNA viruses are pathogens of not only animals but also of plants and protozoans. We used this information to further prioritize our candidate list to ssDNA binding genes that are common between the model plant Arabidopsis thaliana and humans. Based on these strategies, we shortlist several promising candidate genes including the HMGB1 gene which could act as a ssDNA sensor that activates the immune system. Agreeably though we cannot establish a definitive role for these genes as ssDNA sensors of the immune system as yet, our preliminary analysis suggests the potential existence of ssDNA binding protein-like receptors (SLR's) that are worth investigating further.


Asunto(s)
Arabidopsis/inmunología , Virus ADN/fisiología , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína HMGB1/genética , Virosis/inmunología , Biología Computacional , Interacciones Huésped-Patógeno , Humanos , Sistema Inmunológico , Inmunidad Innata , Interferones/metabolismo , Modelos Inmunológicos , Unión Proteica , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...